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DNA is often the target of anti-cancer agents, which alkylate or
oxidatively damage the biopolymer. Hydroxyl radical, metal-oxo
complexes, such as that produced by bleomycin, and singlet oxygen
are examples of agents that oxidatively damage DNA.1-4 Singlet
oxygen, which selectively oxidizes deoxyguanosine, is an important
reactive oxygen species in photodynamic therapy.3,5,6The reactivity
of a subset of DNA alkylating agents is distinguished from reactive
oxygen species by their formation of interstrand cross-links (ISC’s).
For instance, interstrand cross-links are believed to be the source
of the cytotoxicity of the anti-cancer agents, mitomycin C and
chlorambucil.7 Herein, we describe a process involving a modified
nucleotide (2) that potentiates the effects of singlet oxygen by
reacting with this reagent to form ISC’s.

We recently described a mechanism in which 5-(2′-deoxyuridi-
nyl)methyl radical (1) forms an ISC with the opposing deoxyad-
enosine when it is photochemically generated from2 in DNA
(Scheme 1).8,9 In the course of investigating the mechanism for

this process, we examined the effect of singlet oxygen on DNA
containing2. Filtered (λ g 400 nm) aerobic photolysis (30 min) of
5′-32P-3 in the presence of 1-50 µM of the singlet oxygen
sensitizer, Rose Bengal, produced ISC’s in as high as 48% yield
(Figure 1B). Anoxic photolysis of a mixture of 5′-32P-3 and Rose
Bengal (50µM) produces∼3% ISC.16 These observations suggest
that direct photolysis of the phenyl selenide (2), which generates
ISC’s via1 independent of O2, and in lower yield, is not the source
of cross-links under these conditions. Furthermore, the anoxic results
suggest that ISC’s do not result from a direct photoreaction between
the sensitizer and DNA. Instead, the dependence of the rate of

disappearance of monomeric2 on D2O content suggests that singlet
oxygen, whose lifetime is enhanced 10-fold in the deuterated
solvent, is responsible for phenyl selenide consumption (Figure 2).10

Photolysis of an otherwise identical duplex containing dT in place
of 2 produces∼2% ISC, indicating that the phenyl selenide (2)
plays an integral role in their formation in3.16 In contemplating a
mechanism for this process, we recognized that phenyl selenides
are oxidized to selenoxides by singlet oxygen in good yield, and
allylic selenoxides undergo [2,3] sigmatropic rearrangements.11,12

Execution of these reactions in2 would produce an electrophilic
methide-type intermediate (5), akin to other molecules that alkylate
DNA (Scheme 2).13,14 Evidence for this mechanism was gleaned
from NMR analysis of the reaction of monomeric2 with NaIO4

(Figure 3) or its photosensitization by Rose Bengal in deuterated
phosphate buffer.16 Periodate is shown because it rapidly and
completely oxidizes2. The phenyl selenide (2) is completely

Scheme 1

Figure 1. Formation of DNA interstrand cross-links (3, 10 nM) via UV or
Rose Bengal sensitized aerobic photolysis. (A) Autoradiogram comparing
ISC’s produced upon UV or Rose Bengal (50µM) sensitized photolysis.
(B) Effect of Rose Bengal concentration on ISC formation (30 min
photolysis).

Figure 2. Effect of D2O on the consumption of monomeric2 (50 µM)
upon irradiation of Rose Bengal (10µM).
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consumed within 10 min and replaced by a diastereomeric mixture
of the rearrangement product (5). Selenoxide4 is not detected.
Compound5 reacts with the weak nucleophilic H2O over the course
of 24 h to produce 5-hydroxymethyl-2′-deoxyuridine (6), which is
identical to independently prepared material.15 Furthermore, ISC’s
are efficiently formed with the opposing 2′-deoxyadenosine upon
treatment of3 with NaIO4, indicating that the methide (5) produces
cross-links.16

When 5 is produced in duplex DNA, rotation about the
N-glycosidic bond into thesyn-conformation positions the exocyclic
methylene to react with N1 of the opposing deoxyadenosine, which
is the same position that1 is believed to cross-link with. However,
the cross-link products formed in the presence of singlet oxygen
migrate more slowly than those produced via1 (Figure 1A).
Exposure of 5′-32P-3 to singlet oxygen (Figure 1A, lane 2)
previously cross-linked via formation of1 (Figure 1A, lane 1)
indicates that the cross-links produced under singlet oxygen
conditions contain additional damage. Oxidized deoxyguanosines

within the ISC products were deemed to be the most likely lesions
formed in addition to cross-links. The damaged purines were
revealed by treatment of the ISC’s with piperidine and IrCl6 (Figure
1A, lanes 4 and 5).17-20 Piperidine treatment following oxidation
with IrCl6 converts many of the ISC products into shorter, faster
migrating fragments, indicating that not all of the cross-linked
products also contain additional damaged nucleotides.16

The reaction of2 with singlet oxygen is also distinguished from
the radical pathway (1) by the effect of glutathione on ISC
formation. ISC formation is unaffected by physiologically relevant
glutathione concentrations (5 mM) when3 is subjected to singlet
oxygen.16 This observation reinforces those reported above, which
suggest that the combination of the phenyl selenide derivative of
thymidine (2) and singlet oxygen offers a novel and potentially
important means for producing interstrand cross-links in DNA. The
physiological importance of interstrand cross-links suggests that
the incorporation of phenyl selenide2 in DNA could be an effective
adjuvant in photodynamic therapy.
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Scheme 2

Figure 3. 1H NMR analysis of the reaction of2 (50 mM) with NaIO4 (50
mM) in deuterated phosphate buffer (50 mM, pD 7.4). (A) Before NaIO4

addition, (B) 10 min after NaIO4 addition, and (C) 24 h after NaIO4 addition.
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